
Chapter 3

Learning by Examples

This chapter is for those, like us, who don’t like to read manuals. A number of simple
examples cover a good deal of the capacity of FreeFem++ and are self-explanatory. For the
modeling part this chapter continues at Chapter 9 where some PDEs of physics, engineering
and finance are studied in greater depth.

3.1 Membranes

Summary Here we shall learn how to solve a Dirichlet and/or mixed Dirichlet Neumann
problem for the Laplace operator with application to the equilibrium of a membrane under
load. We shall also check the accuracy of the method and interface with other graphics pack-
ages.

An elastic membrane Ω is attached to a planar rigid support Γ, and a force f(x)dx is
exerted on each surface element dx = dx1dx2. The vertical membrane displacement, ϕ(x),
is obtained by solving Laplace’s equation:

−∆ϕ = f in Ω.

As the membrane is fixed to its planar support, one has:

ϕ|Γ = 0.

If the support wasn’t planar but at an elevation z(x1, x2) then the boundary conditions
would be of non-homogeneous Dirichlet type.

ϕ|Γ = z.

If a part Γ2 of the membrane border Γ is not fixed to the support but is left hanging, then
due to the membrane’s rigidity the angle with the normal vector n is zero; thus the boundary
conditions are

ϕ|Γ1 = z,
∂ϕ

∂n
|Γ2 = 0

where Γ1 = Γ− Γ2; recall that ∂ϕ
∂n

= ∇ϕ · n. Let us recall also that the Laplace operator ∆
is defined by:

∆ϕ =
∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

.
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With such ”mixed boundary conditions” the problem has a unique solution (see (1987),
Dautray-Lions (1988), Strang (1986) and Raviart-Thomas (1983)); the easiest proof is to
notice that ϕ is the state of least energy, i.e.

E(φ) = min
ϕ−z∈V

E(v), with E(v) =

∫
Ω

(
1

2
|∇v|2 − fv)

and where V is the subspace of the Sobolev space H1(Ω) of functions which have zero trace
on Γ1. Recall that (x ∈ Rd, d = 2 here)

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))d}

Calculus of variation shows that the minimum must satisfy, what is known as the weak form
of the PDE or its variational formulation (also known here as the theorem of virtual work)∫

Ω

∇ϕ · ∇w =

∫
Ω

fw ∀w ∈ V

Next an integration by parts (Green’s formula) will show that this is equivalent to the PDE
when second derivatives exist.

WARNING Unlike freefem+ which had both weak and strong forms, FreeFem++ im-
plements only weak formulations. It is not possible to go further in using this software if you
don’t know the weak form (i.e. variational formulation) of your problem: either you read a
book, or ask help form a colleague or drop the matter. Now if you want to solve a system
of PDE like A(u, v) = 0, B(u, v) = 0 don’t close this manual, because in weak form it is∫

Ω

(A(u, v)w1 +B(u, v)w2) = 0 ∀w1, w2...

Example Let an ellipse have the length of the semimajor axis a = 2, and unitary the
semiminor axis Let the surface force be f = 1. Programming this case with FreeFem++
gives:

Example 3.1 (membrane.edp) // file membrane.edp
real theta=4.*pi/3.;
real a=2.,b=1.; // the length of the semimajor axis and semiminor axis
func z=x;

border Gamma1(t=0,theta) { x = a * cos(t); y = b*sin(t); }
border Gamma2(t=theta,2*pi) { x = a * cos(t); y = b*sin(t); }
mesh Th=buildmesh(Gamma1(100)+Gamma2(50));

fespace Vh(Th,P2); // P2 conforming triangular FEM
Vh phi,w, f=1;

solve Laplace(phi,w)=int2d(Th)(dx(phi)*dx(w) + dy(phi)*dy(w))
- int2d(Th)(f*w) + on(Gamma1,phi=z);

plot(phi,wait=true, ps="membrane.eps"); // Plot phi
plot(Th,wait=true, ps="membraneTh.eps"); // Plot Th

savemesh(Th,"Th.msh");
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Figure 3.1: Mesh and level lines of the membrane deformation. Below: the same in 3D
drawn by gnuplot from a file generated by FreeFem++ .
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A triangulation is built by the keyword buildmesh. This keyword calls a triangulation
subroutine based on the Delaunay test, which first triangulates with only the boundary
points, then adds internal points by subdividing the edges. How fine the triangulation
becomes is controlled by the size of the closest boundary edges.

The PDE is then discretized using the triangular second order finite element method on the
triangulation; as was briefly indicated in the previous chapter, a linear system is derived
from the discrete formulation whose size is the number of vertices plus the number of mid-
edges in the triangulation. The system is solved by a multi-frontal Gauss LU factorization
implemented in the package UMFPACK. The keyword plot will display both Th and ϕ (remove
Th if ϕ only is desired) and the qualifier fill=true replaces the default option (colored
level lines) by a full color display. Results are on figure 3.1.

plot(phi,wait=true,fill=true); // Plot phi with full color display

Next we would like to check the results!
One simple way is to adjust the parameters so as to know the solutions. For instance on the
unit circle a=1 , ϕe = sin(x2 + y2 − 1) solves the problem when

z = 0, f = −4(cos(x2 + y2 − 1)− (x2 + y2) sin(x2 + y2 − 1))

except that on Γ2 ∂nϕ = 2 instead of zero. So we will consider a non-homogeneous Neumann
condition and solve ∫

Ω

(∇ϕ · ∇w =

∫
Ω

fw +

∫
Γ2

2w ∀w ∈ V

We will do that with two triangulations, compute the L2 error:

ε =

∫
Ω

|ϕ− ϕe|2

and print the error in both cases as well as the log of their ratio an indication of the rate of
convergence.

Example 3.2 (membranerror.edp) // file membranerror.edp
verbosity =0; // to remove all default output
real theta=4.*pi/3.;
real a=1.,b=1.; // the length of the semimajor axis and semiminor axis
border Gamma1(t=0,theta) { x = a * cos(t); y = b*sin(t); }
border Gamma2(t=theta,2*pi) { x = a * cos(t); y = b*sin(t); }

func f=-4*(cos(xˆ2+yˆ2-1) -(xˆ2+yˆ2)*sin(xˆ2+yˆ2-1));
func phiexact=sin(xˆ2+yˆ2-1);

real[int] L2error(2); // an array two values
for(int n=0;n<2;n++)
{

mesh Th=buildmesh(Gamma1(20*(n+1))+Gamma2(10*(n+1)));
fespace Vh(Th,P2);
Vh phi,w;

solve laplace(phi,w)=int2d(Th)(dx(phi)*dx(w) + dy(phi)*dy(w))
- int2d(Th)(f*w) - int1d(Th,Gamma2)(2*w)+ on(Gamma1,phi=0);
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plot(Th,phi,wait=true,ps="membrane.eps"); // Plot Th and phi

L2error[n]= sqrt(int2d(Th)((phi-phiexact)ˆ2));
}

for(int n=0;n<2;n++)
cout << " L2error " << n << " = "<< L2error[n] <<endl;

cout <<" convergence rate = "<< log(L2error[0]/L2error[1])/log(2.) <<endl;

the output is

L2error 0 = 0.00462991
L2error 1 = 0.00117128
convergence rate = 1.9829

times: compile 0.02s, execution 6.94s

We find a rate of 1.93591, which is not close enough to the 3 predicted by the theory. The
Geometry is always a polygon so we lose one order due to the geometry approximation in
O(h2)

Now if you are not satisfied with the .eps plot generated by FreeFem++ and you want to
use other graphic facilities, then you must store the solution in a file very much like in C++.
It will be useless if you don’t save the triangulation as well, consequently you must do

{
ofstream ff("phi.txt");
ff << phi[];
}

savemesh(Th,"Th.msh");

For the triangulation the name is important: it is the extension that determines the format.

Still that may not take you where you want. Here is an interface with gnuplot to produce
the right part of figure 3.2.

// to build a gnuplot data file
{ ofstream ff("graph.txt");

for (int i=0;i<Th.nt;i++)
{ for (int j=0; j <3; j++)

ff<<Th[i][j].x << " "<< Th[i][j].y<< " "<<phi[][Vh(i,j)]<<endl;
ff<<Th[i][0].x << " "<< Th[i][0].y<< " "<<phi[][Vh(i,0)]<<"\n\n\n"
}

}

We use the finite element numbering, where Wh(i,j) is the global index of jTh degrees of
freedom of triangle number i.
Then open gnuplot and do

set palette rgbformulae 30,31,32
splot "graph.txt" w l pal

This works with P2 and P1, but not with P1nc because the 3 first degrees of freedom of
P2 or P2 are on vertices and not with P1nc.
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