
Chapter 3

Learning by Examples

This chapter is for those, like us, who don’t like to read manuals. A number of simple
examples cover a good deal of the capacity of FreeFem++ and are self-explanatory. For the
modeling part this chapter continues at Chapter 9 where some PDEs of physics, engineering
and finance are studied in greater depth.

3.1 Membranes

Summary Here we shall learn how to solve a Dirichlet and/or mixed Dirichlet Neumann
problem for the Laplace operator with application to the equilibrium of a membrane under
load. We shall also check the accuracy of the method and interface with other graphics pack-
ages.

An elastic membrane Ω is attached to a planar rigid support Γ, and a force f(x)dx is
exerted on each surface element dx = dx1dx2. The vertical membrane displacement, ϕ(x),
is obtained by solving Laplace’s equation:

−∆ϕ = f in Ω.

As the membrane is fixed to its planar support, one has:

ϕ|Γ = 0.

If the support wasn’t planar but at an elevation z(x1, x2) then the boundary conditions
would be of non-homogeneous Dirichlet type.

ϕ|Γ = z.

If a part Γ2 of the membrane border Γ is not fixed to the support but is left hanging, then
due to the membrane’s rigidity the angle with the normal vector n is zero; thus the boundary
conditions are

ϕ|Γ1 = z,
∂ϕ

∂n
|Γ2 = 0

where Γ1 = Γ− Γ2; recall that ∂ϕ
∂n

= ∇ϕ · n. Let us recall also that the Laplace operator ∆
is defined by:

∆ϕ =
∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

.

31

32 CHAPTER 3. LEARNING BY EXAMPLES

With such ”mixed boundary conditions” the problem has a unique solution (see (1987),
Dautray-Lions (1988), Strang (1986) and Raviart-Thomas (1983)); the easiest proof is to
notice that ϕ is the state of least energy, i.e.

E(φ) = min
ϕ−z∈V

E(v), with E(v) =

∫
Ω

(
1

2
|∇v|2 − fv)

and where V is the subspace of the Sobolev space H1(Ω) of functions which have zero trace
on Γ1. Recall that (x ∈ Rd, d = 2 here)

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ (L2(Ω))d}

Calculus of variation shows that the minimum must satisfy, what is known as the weak form
of the PDE or its variational formulation (also known here as the theorem of virtual work)∫

Ω

∇ϕ · ∇w =

∫
Ω

fw ∀w ∈ V

Next an integration by parts (Green’s formula) will show that this is equivalent to the PDE
when second derivatives exist.

WARNING Unlike freefem+ which had both weak and strong forms, FreeFem++ im-
plements only weak formulations. It is not possible to go further in using this software if you
don’t know the weak form (i.e. variational formulation) of your problem: either you read a
book, or ask help form a colleague or drop the matter. Now if you want to solve a system
of PDE like A(u, v) = 0, B(u, v) = 0 don’t close this manual, because in weak form it is∫

Ω

(A(u, v)w1 +B(u, v)w2) = 0 ∀w1, w2...

Example Let an ellipse have the length of the semimajor axis a = 2, and unitary the
semiminor axis Let the surface force be f = 1. Programming this case with FreeFem++
gives:

Example 3.1 (membrane.edp) // file membrane.edp
real theta=4.*pi/3.;
real a=2.,b=1.; // the length of the semimajor axis and semiminor axis
func z=x;

border Gamma1(t=0,theta) { x = a * cos(t); y = b*sin(t); }
border Gamma2(t=theta,2*pi) { x = a * cos(t); y = b*sin(t); }
mesh Th=buildmesh(Gamma1(100)+Gamma2(50));

fespace Vh(Th,P2); // P2 conforming triangular FEM
Vh phi,w, f=1;

solve Laplace(phi,w)=int2d(Th)(dx(phi)*dx(w) + dy(phi)*dy(w))
- int2d(Th)(f*w) + on(Gamma1,phi=z);

plot(phi,wait=true, ps="membrane.eps"); // Plot phi
plot(Th,wait=true, ps="membraneTh.eps"); // Plot Th

savemesh(Th,"Th.msh");

3.1. MEMBRANES 33

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-1
-0.8

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

"phi.txt"

Figure 3.1: Mesh and level lines of the membrane deformation. Below: the same in 3D
drawn by gnuplot from a file generated by FreeFem++ .

34 CHAPTER 3. LEARNING BY EXAMPLES

A triangulation is built by the keyword buildmesh. This keyword calls a triangulation
subroutine based on the Delaunay test, which first triangulates with only the boundary
points, then adds internal points by subdividing the edges. How fine the triangulation
becomes is controlled by the size of the closest boundary edges.

The PDE is then discretized using the triangular second order finite element method on the
triangulation; as was briefly indicated in the previous chapter, a linear system is derived
from the discrete formulation whose size is the number of vertices plus the number of mid-
edges in the triangulation. The system is solved by a multi-frontal Gauss LU factorization
implemented in the package UMFPACK. The keyword plot will display both Th and ϕ (remove
Th if ϕ only is desired) and the qualifier fill=true replaces the default option (colored
level lines) by a full color display. Results are on figure 3.1.

plot(phi,wait=true,fill=true); // Plot phi with full color display

Next we would like to check the results!
One simple way is to adjust the parameters so as to know the solutions. For instance on the
unit circle a=1 , ϕe = sin(x2 + y2 − 1) solves the problem when

z = 0, f = −4(cos(x2 + y2 − 1)− (x2 + y2) sin(x2 + y2 − 1))

except that on Γ2 ∂nϕ = 2 instead of zero. So we will consider a non-homogeneous Neumann
condition and solve ∫

Ω

(∇ϕ · ∇w =

∫
Ω

fw +

∫
Γ2

2w ∀w ∈ V

We will do that with two triangulations, compute the L2 error:

ε =

∫
Ω

|ϕ− ϕe|2

and print the error in both cases as well as the log of their ratio an indication of the rate of
convergence.

Example 3.2 (membranerror.edp) // file membranerror.edp
verbosity =0; // to remove all default output
real theta=4.*pi/3.;
real a=1.,b=1.; // the length of the semimajor axis and semiminor axis
border Gamma1(t=0,theta) { x = a * cos(t); y = b*sin(t); }
border Gamma2(t=theta,2*pi) { x = a * cos(t); y = b*sin(t); }

func f=-4*(cos(xˆ2+yˆ2-1) -(xˆ2+yˆ2)*sin(xˆ2+yˆ2-1));
func phiexact=sin(xˆ2+yˆ2-1);

real[int] L2error(2); // an array two values
for(int n=0;n<2;n++)
{

mesh Th=buildmesh(Gamma1(20*(n+1))+Gamma2(10*(n+1)));
fespace Vh(Th,P2);
Vh phi,w;

solve laplace(phi,w)=int2d(Th)(dx(phi)*dx(w) + dy(phi)*dy(w))
- int2d(Th)(f*w) - int1d(Th,Gamma2)(2*w)+ on(Gamma1,phi=0);

3.1. MEMBRANES 35

plot(Th,phi,wait=true,ps="membrane.eps"); // Plot Th and phi

L2error[n]= sqrt(int2d(Th)((phi-phiexact)ˆ2));
}

for(int n=0;n<2;n++)
cout << " L2error " << n << " = "<< L2error[n] <<endl;

cout <<" convergence rate = "<< log(L2error[0]/L2error[1])/log(2.) <<endl;

the output is

L2error 0 = 0.00462991
L2error 1 = 0.00117128
convergence rate = 1.9829

times: compile 0.02s, execution 6.94s

We find a rate of 1.93591, which is not close enough to the 3 predicted by the theory. The
Geometry is always a polygon so we lose one order due to the geometry approximation in
O(h2)

Now if you are not satisfied with the .eps plot generated by FreeFem++ and you want to
use other graphic facilities, then you must store the solution in a file very much like in C++.
It will be useless if you don’t save the triangulation as well, consequently you must do

{
ofstream ff("phi.txt");
ff << phi[];
}

savemesh(Th,"Th.msh");

For the triangulation the name is important: it is the extension that determines the format.

Still that may not take you where you want. Here is an interface with gnuplot to produce
the right part of figure 3.2.

// to build a gnuplot data file
{ ofstream ff("graph.txt");

for (int i=0;i<Th.nt;i++)
{ for (int j=0; j <3; j++)

ff<<Th[i][j].x << " "<< Th[i][j].y<< " "<<phi[][Vh(i,j)]<<endl;
ff<<Th[i][0].x << " "<< Th[i][0].y<< " "<<phi[][Vh(i,0)]<<"\n\n\n"
}

}

We use the finite element numbering, where Wh(i,j) is the global index of jTh degrees of
freedom of triangle number i.
Then open gnuplot and do

set palette rgbformulae 30,31,32
splot "graph.txt" w l pal

This works with P2 and P1, but not with P1nc because the 3 first degrees of freedom of
P2 or P2 are on vertices and not with P1nc.

	Introduction
	Installation
	For everyone:
	For the pros: Installation from sources

	How to use FreeFem++
	Environment variables, and the init file
	History

	Getting Started
	FEM by FreeFem++ : how does it work?
	Some Features of FreeFem++

	The Development Cycle: Edit–Run/Visualize–Revise

	Learning by Examples
	Membranes
	Heat Exchanger
	Acoustics
	Thermal Conduction
	Axisymmetry: 3D Rod with circular section
	A Nonlinear Problem : Radiation

	Irrotational Fan Blade Flow and Thermal effects
	Heat Convection around the airfoil

	Pure Convection : The Rotating Hill
	The System of elasticity
	The System of Stokes for Fluids
	A Projection Algorithm for the Navier-Stokes equations
	Newton Method for the Steady Navier-Stokes equations
	A Large Fluid Problem
	An Example with Complex Numbers
	Optimal Control
	A Flow with Shocks
	Classification of the equations
	Optimize Time depend schema for Heat equation
	Tutorial to write a transient Stokes solver in matrix form

	Syntax
	Data Types
	List of major types
	Global Variables
	System Commands
	Arithmetics
	string expression
	Functions of one Variable
	Functions of two Variables
	Formula
	FE-functions

	Arrays
	Arrays with two integer indices versus matrices
	Matrix construction and setting
	Matrix Operations
	Other arrays

	Map arrays
	Loops
	Input/Output
	Script arguments

	preprocessor
	Exception handling

	Mesh Generation
	Commands for Mesh Generation
	Square
	Border
	Multi-Border
	Data Structures and Read/Write Statements for a Mesh
	Mesh Connectivity and data
	The keyword "triangulate"

	Boundary FEM Spaces Built as Empty Meshes
	Remeshing
	Movemesh

	Regular Triangulation: hTriangle
	Adaptmesh
	Trunc
	Splitmesh
	Meshing Examples
	How to change the label of elements and border elements of a mesh
	Mesh in three dimensions
	cube
	Read/Write Statements for a Mesh in 3D
	TeGen: A tetrahedral mesh generator
	Reconstruct/Refine a three dimensional mesh with TetGen
	Moving mesh in three dimensions
	Layer mesh

	Meshing examples
	Build a 3d mesh of a cube with a balloon

	The output solution formats .sol and .solb
	medit
	Mshmet
	FreeYams
	mmg3d
	A first 3d isotope mesh adaptation process
	Build a 2d mesh from a isoline

	Finite Elements
	Use of ``fespace'' in 2d
	Use of fespace in 3d
	Lagrangian Finite Elements
	P0-element
	P1-element
	P2-element

	P1 Nonconforming Element
	Other FE-space
	Vector valued FE-function
	Raviart-Thomas element

	A Fast Finite Element Interpolator
	Keywords: Problem and Solve
	Weak form and Boundary Condition

	Parameters affecting solve and problem
	Problem definition
	Numerical Integration
	Variational Form, Sparse Matrix, PDE Data Vector
	Interpolation matrix
	Finite elements connectivity

	Visualization
	Plot
	link with gnuplot
	link with medit

	Algorithms and Optimization
	conjugate Gradient/GMRES
	Algorithms for Unconstrained Optimization
	Example of utilization for BFGS or CMAES

	IPOPT
	Short description of the algorithm
	IPOPT in FreeFem++

	Some short examples using IPOPT
	3D constrained minimal surface with IPOPT
	Area and volume expressions
	Derivatives
	The problem and its script :

	The nlOpt optimizers
	Optimization with MPI

	Mathematical Models
	Static Problems
	Soap Film
	Electrostatics
	Aerodynamics
	Error estimation
	Periodic Boundary Conditions
	Poisson Problems with mixed boundary condition
	Poisson with mixted finite element
	Metric Adaptation and residual error indicator
	Adaptation using residual error indicator

	Elasticity
	Fracture Mechanics

	Nonlinear Static Problems
	Newton-Raphson algorithm

	Eigenvalue Problems
	Evolution Problems
	Mathematical Theory on Time Difference Approximations.
	Convection
	2D Black-Scholes equation for an European Put option

	Navier-Stokes Equation
	Stokes and Navier-Stokes
	Uzawa Algorithm and Conjugate Gradients
	NSUzawaCahouetChabart.edp

	Variational inequality
	Domain decomposition
	Schwarz Overlap Scheme
	Schwarz non Overlap Scheme
	Schwarz-gc.edp

	Fluid/Structures Coupled Problem
	Transmission Problem
	Free Boundary Problem
	Non linear Elasticity (nolinear-elas.edp)
	Compressible Neo-Hookean Materials: Computational Solutions
	Notation
	A Neo-Hookean Compressible Material
	An Approach to Implementation in FreeFem++

	Whispering gallery modes
	Wave equation for the WGMs

	Weak formulation
	A dielectric sphere example with FreeFem++

	MPI Parallel version
	MPI keywords
	MPI constants
	MPI Constructor
	MPI functions
	MPI communicator operator
	Schwarz example in parallel
	True parallel Schwarz example

	Parallel sparse solvers
	Using parallel sparse solvers in FreeFem++
	Sparse direct solver
	MUMPS solver
	SuperLU distributed solver
	Pastix solver

	Parallel sparse iterative solver
	pARMS solver
	Interfacing with HIPS
	Interfacing with HYPRE
	Conclusion

	Domain decomposition
	Communicators and groups
	Process
	Points to Points communicators
	Global operations

	HPDDM solvers
	Time dependent problem
	Distributed vectors in HPDDM

	Mesh Files
	File mesh data structure
	bb File type for Store Solutions
	BB File Type for Store Solutions
	Metric File
	List of AM_FMT, AMDBA Meshes

	Addition of a new finite element
	Some notations
	Which class to add?

	Table of Notations
	Generalities
	Sets, Mappings, Matrices, Vectors
	Numbers
	Differential Calculus
	Meshes
	Finite Element Spaces

	Grammar
	The bison grammar
	The Types of the languages, and cast
	All the operators

	Dynamical link
	A first example myfunction.cpp
	Example: Discrete Fast Fourier Transform
	Load Module for Dervieux' P0-P1 Finite Volume Method
	More on Adding a new finite element
	Add a new sparse solver

	Plugin
	gsl
	ffrandom

	Keywords

